Skip to main content
x


Hydrogen Europe:
European Hydrogen & Fuel cell Project Database

Project FLUIDCELL

Project subtitle

Advanced m-CHP fuel CELL system based on a novel bio-ethanol Fluidized bed membrane reformer

FLUIDCELL aims the Proof of Concept of an advanced high performance, cost effective bio-ethanol m-CHP FC system for decentralized off-grid, by improving technology developments from previous EU projects. The improvements will be achieved by development of a) better system integration using a fluidized bed catalytic membrane reactor working at low temperature (<500°C) b)innovative materials;Pd pore filled (PdPF) membrane, low temperature autothermal ethanol steam reforming (AESR) catalysits and c) most advance FC technologies. Low temperature allows lower thermal duty, higher compactness, use of less expensive materials and long term stability. The H2 is produced from bioethanol which is non-toxic, high energy density, easy handling fuel which can be obtained from cellulose or lignocellulose. Compared with standard AESR, the use of a membrane reactor allows operating at lower temperatures while also suppressing the methane formation via the in-situ recovery of H2. The fluidized bed system allows operating at a virtually uniform temperature which is beneficial in terms of both membrane stability and durability and for the reaction selectivity and yield; since the possible carbonaceous depositions are better exposed to contact with steam and, therefore, faster gasified; in addition, the feedstock is in contact with all the catalyst particles and the fluxes and temperatures are homogeneous, avoiding any polarization phenomena along the membrane. The use of the H2-selective Pd membrane, as proposed in FluidCELL, can circumvent the constraint of high temperatures by shifting the equilibriums, allowing higher H2 yield at much lower temperatures. Besides, the possible detrimental erosion of the membrane produced by fluidized bed will be diminished by considering the use of PdPF membranes where Pd is located inside the nanopores of a ceramic support located below a ceramic protecting layer; this innovative membrane will be for the first time used in fluidized bed reactors.

Project Information

Type of project : Research

Timing : 01/04/2014 > 30/04/2018

Project Budget : 4.193.548 €

Funding



Project partners

Coordinator :
TECNALIA Research & Innovation (TECNALIA)

Partners :
CEA - Commissariat à l'énergie atomique et aux énergies alternatives
University of Perugia
HyGear B.V.

TECHNISCHE UNIVERSITEIT EINDHOVEN

POLITECNICO DI MILANO

UNIVERSIDADE DO PORTO

ICI CALDAIE SPA

QUANTIS


Sub project(s)

1

Sub project 1

Country
Spain
Address

PARQUE TECNOLOGICO DE BIZKAIA - CALLE GELDO - EDIFICIO 700 48160 DERIO

Sub project categories
geo
39.8370392, -0.46734

Project Id: 970

This project datasheet was last updated on : 21.11.2017

Modify this project datasheet

Contact us